37,418 research outputs found

    Optimal Scaling of a Gradient Method for Distributed Resource Allocation

    Get PDF
    We consider a class of weighted gradient methods for distributed resource allocation over a network. Each node of the network is associated with a local variable and a convex cost function; the sum of the variables (resources) across the network is fixed. Starting with a feasible allocation, each node updates its local variable in proportion to the differences between the marginal costs of itself and its neighbors. We focus on how to choose the proportional weights on the edges (scaling factors for the gradient method) to make this distributed algorithm converge and on how to make the convergence as fast as possible. We give sufficient conditions on the edge weights for the algorithm to converge monotonically to the optimal solution; these conditions have the form of a linear matrix inequality. We give some simple, explicit methods to choose the weights that satisfy these conditions. We derive a guaranteed convergence rate for the algorithm and find the weights that minimize this rate by solving a semidefinite program. Finally, we extend the main results to problems with general equality constraints and problems with block separable objective function

    Strong monotonicity in mixed-state entanglement manipulation

    Full text link
    A strong entanglement monotone, which never increases under local operations and classical communications (LOCC), restricts quantum entanglement manipulation more strongly than the usual monotone since the usual one does not increase on average under LOCC. We propose new strong monotones in mixed-state entanglement manipulation under LOCC. These are related to the decomposability and 1-positivity of an operator constructed from a quantum state, and reveal geometrical characteristics of entangled states. These are lower bounded by the negativity or generalized robustness of entanglement.Comment: 6 pages and 1 figure. A brief discussion about the connection to asymptotic distillability was adde

    Multi-mesh gear dynamics program evaluation and enhancements

    Get PDF
    A multiple mesh gear dynamics computer program was continually developed and modified during the last four years. The program can handle epicyclic gear systems as well as single mesh systems with internal, buttress, or helical tooth forms. The following modifications were added under the current funding: variable contact friction, planet cage and ring gear rim flexibility options, user friendly options, dynamic side bands, a speed survey option and the combining of the single and multiple mesh options into one general program. The modified program was evaluated by comparing calculated values to published test data and to test data taken on a Hamilton Standard turboprop reduction gear-box. In general, the correlation between the test data and the analytical data is good

    Ecosystem Good and Service Co-Effects of Terrestrial Carbon Sequestration: Implications for the U.S. Geological Survey’s LandCarbon Methodology

    Get PDF
    This paper describes specific ways in which the analysis of ecosystem goods and services can be included in terrestrial carbon sequestration assessments and planning. It specifically reviews the U.S. Geological Survey’s LandCarbon assessment methodology for ecosystem services. The report assumes that the biophysical analysis of co-effects should be designed to facilitate social evaluation. Accordingly, emphasis is placed on natural science strategies and outputs that complement subsequent economic and distributional analysis.ecosystem services, carbon sequestration, land use planning

    Electromagnetically Induced Transparency with Quantized Fields in Optocavity Mechanics

    Get PDF
    We report electromagnetically induced transparency using quantized fields in optomechanical systems. The weak probe field is a narrow band squeezed field. We present a homodyne detection of EIT in the output quantum field. We find that the EIT dip exists even though the photon number in the squeezed vacuum is at the single photon level. The EIT with quantized fields can be seen even at temperatures of the order of 100 mK paving the way for using optomechanical systems as memory elements.Comment: 6 pages, 5 figure

    Fitting Jump Models

    Get PDF
    We describe a new framework for fitting jump models to a sequence of data. The key idea is to alternate between minimizing a loss function to fit multiple model parameters, and minimizing a discrete loss function to determine which set of model parameters is active at each data point. The framework is quite general and encompasses popular classes of models, such as hidden Markov models and piecewise affine models. The shape of the chosen loss functions to minimize determine the shape of the resulting jump model.Comment: Accepted for publication in Automatic

    Scalable Ellipsoidal Classification for Bipartite Quantum States

    Full text link
    The Separability Problem is approached from the perspective of Ellipsoidal Classification. A Density Operator of dimension N can be represented as a vector in a real vector space of dimension N2−1N^{2}- 1, whose components are the projections of the matrix onto some selected basis. We suggest a method to test separability, based on successive optimization programs. First, we find the Minimum Volume Covering Ellipsoid that encloses a particular set of properly vectorized bipartite separable states, and then we compute the Euclidean distance of an arbitrary vectorized bipartite Density Operator to this ellipsoid. If the vectorized Density Operator falls inside the ellipsoid, it is regarded as separable, otherwise it will be taken as entangled. Our method is scalable and can be implemented straightforwardly in any desired dimension. Moreover, we show that it allows for detection of Bound Entangled StatesComment: 8 pages, 5 figures, 3 tables. Revised version, to appear in Physical Review
    • …
    corecore